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Abstract

Despite mounting evidence of the importance of large non-coding RNAs (lncRNAs) in biological 

regulation, we still know little about how these lncRNAs function. One approach to understand the 

function of lncRNAs is to biochemically purify endogenous lncRNAs from fixed cells using 

complementary oligonucleotides. These hybridization capture approaches can reveal the genomic 

localization of lncRNAs, as well as the proteins and RNAs with which they interact. To help 

researchers understand how these tools can uncover lncRNA function, this review discusses the 

considerations and influences of different parameters, (e.g., crosslinking reagents, oliognucleotide 

chemistry and hybridization conditions) and controls to avoid artifacts. By examining the 

application of these tools, this review will highlight the progress and pitfalls of studying lncRNAs 

using hybridization capture approaches.
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Introduction

Functional non-coding RNAs have been known since the advent of molecular biology [1], 

but the scope of non-coding RNA function continues to expand at a surprising rate [2]. In 

mammals, the long non-coding RNAs (lncRNAs; also referred to as large non-coding or 

long intergenic non-coding RNAs) have drawn particular interest. One of the first 

mammalian lncRNA to be discovered was Xist, which spreads across chromatin of an entire 

chromosome (the inactive X in female cells), leading to remodeling of chromatin structure 

and composition [3, 4]. While Xist provides one good example of a lncRNA with an 

important biological role, it appears to be the tip of the iceberg; the numerous recent reports 

of lncRNA functions [5, 6, 7] support the notion that lncRNAs have fundamental roles in 

most biological processes.
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Despite many recent studies that highlight the importance of lncRNA functions [6], the 

foundations of the field have not yet solidified. While many specific classes of lncRNAs 

have been proposed, the field is far from consensus regarding how to best draw these 

delineations. Further, many of the choices for how to study and classify lncRNAs remain 

operational and pragmatic rather than being based on processing or biological pathways (for 

discussions of classification systems, see [7, 8, 9]). For example, there are only operational 

definitions of what defines a lncRNA; generally lncRNAs are referred to as lncRNAs if they 

are >200 nt long, but the term lncRNA has additional implications. While the majority of the 

genome can be transcribed, the terms lncRNA (and sometimes more specifically the 

intergenic or interleaving subclass of lncRNAs, lincRNAs) are reserved for those transcribed 

loci that resemble mRNAs in so far as they are RNA Pol II transcripts that are capped, 

spliced and polyadenylated. Unlike mRNAs, lncRNAs do not have extensive open reading 

frames. More progress will be needed to determine the importance of these distinctions and 

refine them to classify lncRNAs based on less arbitrary criteria.

Compared with our knowledge of proteins, little is known about the specific biochemical 

interactions that govern lncRNA function. To some extent, this uncertainty reflects the 

recent focus on lncRNAs, but it is also due to the relative paucity of tools to study these 

RNAs. It has been hard to reach consensus on how to interpret even classical biochemical 

analyses of lncRNA biochemistry [10]. Therefore, central to our knowledge of lncRNA 

biology is developing a critical understanding of the experiments that are most central to the 

field.

Of the numerous methods to study lncRNAs, there has been rapid progress in many areas 

that have been reviewed elsewhere [11, 12], including new functional approaches to direct 

and perturb lncRNA function, new approaches to study RNA structure, methods to study the 

RNA targets of proteins and methods to install genetic tags into lncRNAs. Here I will focus 

on advances in the use of hybridization capture approaches to study lncRNA targets.

There is a long history of studying cellular non-coding nucleic acids using labeled 

complementary nucleotides that hybridize specifically to their targets. As an early example, 

in situ hybridization (ISH) experiments were developed in which labeled nucleotides were 

used in cytology to localize complementary ribosomal sequences [13, 14]. Eventually, these 

experiments were extended to hybridization capture experiments using biotinylated 

oligonucleotides to biochemically enrich RNPs from native cell extracts leading to 

purification of splicing complexes [15, 16], 7SK RNP [17] and an active telomerase 

complex [18] among others.

Given the heightened interest that has developed around the roles of lncRNAs, it is no 

surprise that there has been a renaissance in hybridization capture methods to study these 

RNAs, and especially the adaptation of these techniques to use with crosslinked extracts 

[19], to deep sequencing [20, 21, 22], and to proteomic approaches [23, 24, 25, 26]. While 

the availability of these techniques represents a step forward for the field, maximizing the 

biological insights from the results of these techniques requires an expanded and critical 

understanding of the parameters and possible artifacts that these approaches produce.
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Overview of Hybridization Capture Approaches

To study a lncRNA, it would be ideal to be able to purify the endogenous RNA from a 

biological extract and analyze the proteins and other targets with which it interacts (e.g., 

where it binds in the genome). Unlike the study of proteins, in which case specific antisera 

must be raised, the predictability of Watson-Crick base-pairing means that complementary 

oligonucleotides can be used for hybridization capture experiments. Generally, hybridization 

capture experiments are performed as depicted in Fig. 1. To successfully accomplish such a 

purification, several parameters need to be determined: how to fix the cells, design the 

capture oligonucleotides, perform the hybridization, enrich the target molecules and 

interpret the results. Conditions for the first three reports of hybridization capture methods 

that provided successful enrichment in genome-wide analyses are provided in Table 1, 

including Capture Hybridization Analysis of RNA Targets (CHART) [20], Chromatin 

Isolation by RNA Purification (ChIRP)[21] and RNA Affinity Purification (RAP) [22]. 

Equally important to the hybridization capture conditions is the design of appropriate 

controls and an understanding of sources of background signals.

Cell systems

Hybridization capture experiments are generally performed on a similar scale to the 

analogous protein-centric experiments. For example, these experiments use on the order of 

107 cells to determine genomic binding sites, similar to chromatin immunoprecipitation 

(ChIP) experiments. While ideally the analysis is directed at endogenous levels of the RNA, 

induced over-expression of the lncRNA can lead to higher yields, albeit at the potential cost 

of biological relevance. While eventually it will be helpful to establish principles for how 

much material is required for these experiments and how highly the RNA needs to be 

expressed, it is likely that the diversity of RNA structure, the nature of different RNA 

targets, and the purpose of the experiments will make generalization difficult. Furthermore, 

while analysis of nucleic acids allows for amplification of the enriched targets, analysis of 

proteins does not allow for such enrichment and therefore demands greater amounts of 

starting material.

Crosslinking conditions

In some cases, native conditions (without crosslinking) have been used to purify RNAs 

together with their associated complexes using hybridization capture [15, 16, 17, 18]. This 

approach offers several advantages, including the ability to purify catalytically active RNP 

complexes. If the aim of the study is to identify RNA targets, however, the ability to 

covalently attach an RNA to its targets can offer several advantages over native 

purifications. As long as the crosslinking is rapid, it is reasonable to assume that the covalent 

complexes represent a “snap-shot” of the factors bound to the RNA at the time of cross-

linking. Under these conditions, sufficient rinsing is used to reduce artifacts caused by non-

covalent interactions that occur after the cells are disrupted (the post-lysis interactions will 

be non-covalent whereas the real targets will be covalently connected to the RNA). Several 

cross-linking conditions have been developed for RNA hybridization capture experiments, 

each with their own considerations. These conditions include exposure to formaldehyde, 
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glutaraldehyde, disuccinimidyl gluterate, psoralen derivatives and UV light (Fig. 2). These 

crosslinking conditions, described in detail below, can be evaluated by their specificity, 

yield of crosslinking, stability and reversibility.

Formaldehyde

When studying factors that bind chromatin, the success of ChIP offers important precedent. 

The most common ChIP protocols employ formaldehyde crosslinking. Formaldehyde can be 

a very specific crosslinking reagent. Early studies using formaldehyde to examine protein-

nucleic acid interactions demonstrated that it specifically captures bona fide interactions and 

demonstrates low levels of non-specific crosslinking (e.g., DNA does not crosslink to 

irrelevant proteins such as bovine serum albumen, even at high concentrations in vitro) [27].

Formaldehyde alone is used in CHART [20], but this protocol uses more extensive 

formaldehyde treatment than ChIP (3% formaldehyde for 30 min in CHART rather than the 

~1% formaldehyde for 10 min used in ChIP). In principle extensive cross-linking might trap 

non-specific interactions, but there is little evidence of such artifacts. In fact, the extensive 

formaldehyde treatment used in CHART was derived from a similar hybridization capture 

strategy designed to capture fragments of DNA (Proteomics of Intact Chromatin, PICh), 

which when applied to telomeres led to very specific retrieval of real telomere-localized 

proteins [28]. It is worth noting that formaldehyde is expected to lead to the retrieval of both 

molecules in direct contact with the RNA, as well as molecules that are indirectly cross-

linked through other factors. Formaldehyde crosslinking is largely reversible, which offers 

downstream advantages. When analyzing proteins, this reversibility provides access to 

conventional SDS-PAGE and western blot analyses. When analyzing nucleic acids the 

formaldehyde crosslinking is reversed and does not substantially interfere with downstream 

library preparation or sequencing (as with ChIP-Seq).

Glutaraldehyde

Glutaraldehyde is also a fast-acting, membrane-permeable small molecule that can be used 

to covalently crosslink biomolecules. Gluteraldehyde is a popular crosslinker in the field of 

electron microscopy, and was used as the basis of the original ChIRP protocol [21]. 

Glutaraldehyde is a longer molecule than formaldehyde and contains two aldehydes 

available for crosslinking, increasing the distance between residues that it can crosslink. In 

aqueous solution, gluteraldehyde can form several diverse cyclized, oligomerized, and 

polymerized species, many of which can react with biomolecules, especially primary amines 

such as lysine. Around neutral pH, some glutaraldehyde adducts are irreversible [29]. This is 

not surprising as the imine adducts of glutaraldenhyde have reactive hydrogens alpha to the 

imine which have the potential to tautomerize to enamines and undergo Mannich-type 

reactions with irreversible products. In the context of a hybridization capture experiment, 

this irreversibility prevents conventional protein analyses such as SDS-PAGE, but protein 

enrichment can still be analyzed using slot blots [21]. Like formaldehyde, glutaraldehyde 

can crosslink both direct and indirect targets of an RNA.
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Disuccinimidyl glutarate (DSG)

Another membrane-permeable crosslinker is DSG, which is a homobifunctional crosslinker 

that forms irreversible adducts with proteins. DSG was used in the original RAP protocol 

[22]. DSG contains two activated carboxylic acids in the form of N-hydroxysuccinimide 

(NHS) esters. NHS esters are stable enough in aqueous media to provide reasonable 

crosslinking times and concentrations, but are still highly reactive towards nucleophiles such 

as primary amines. In the case of reaction with primary amines, the product of DSG 

crosslinking is an amide bond which would be very challenging to reverse without 

destroying other target biomolecules. Therefore DSG has many of the same advantages and 

limitations as glutaraldehyde.

Psoralen and UV

Nucleic acids are photoreactive, and UV light has long been used to crosslink nucleic acids 

to their targets. UV crosslinking is the basis of some popular protein-centric analyses of 

protein-RNA interactions including CLIP [30] and PAR-CLIP [31]. UV crosslinking can be 

performed without additives, in which case the nucleobases of DNA or RNA absorb the UV 

light (near 260 nm), leading to a high-energy excited state which can lead to crosslinks to 

nearby biomolecules. This strategy has been used when performing hybridization capture 

reactions [25, 26], and has proven especially powerful for the isolation of protein targets of 

an RNA.

Both the strength and the weakness of UV crosslinking is its specificity. UV tends to 

crosslink only molecules in direct contact with the RNA of interest, which can provide an 

advantage as the adducts identified by hybridization capture are likely to be direct targets of 

the RNA. On the other hand, the efficiency of UV crosslink formation can be low and is 

thought to be very sensitive to local functional groups and structural orientation. Therefore it 

is generally assumed that UV crosslinking provides high specificity for real interactions, but 

also has a high false-negative rate, missing many interactions that exist in the cell but do not 

efficiently crosslink. It will be interesting to see how recent hybridization capture protocols, 

which expose cells to very high levels of UV crosslinking, impacts the rate of false-negative 

results.

As an alternative to direct excitation of the RNA nucleobases, the cell can be treated with 

photoreactive small molecules such as psoralen (or analogues thereof) which can intercalate 

into double-stranded nucleic acids and cause crosslinks when exposed to UV light, 

frequently using lower energy light (near 365 nm). Psoralen-mediated crosslinking for 

hybridization capture has been used to study networds of RNA-RNA interactions [32]. One 

major consideration with this approach is that the specificity of intercalation may dominate 

where crosslinks are formed. For example, psoralen has a strong preference to crosslink 

T/U-rich sequences. Nonetheless, the advantage of psoralen include the longer wavelength 

light that can be used in crosslinking (365 nm), leadning to less nucleic acid damage during 

the crosslinking reaction. Furthermore, unlike direct crosslinking of nucleic acids with short 

wavelength light, psoralen crosslinks can be reversed. The extent and wavelength of UV 

light used in crosslinking is a particularly important consideration for hybridization capture 

approaches (such as the genomic targets of an RNA). UV treatment at shorter wavelengths 
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will cause DNA and RNA to accumulate crosslinks, complicating efforts to use sequencing 

methodologies to characterize RNA targets.

Generation of extracts

After crosslinking, the cellular material is solubilized prior to hybridization. The ease of 

extract preparation depends on what crosslinking conditions were used. One advantage of 

UV crosslinking in comparison with formaldehyde or the other chemical crosslinkers 

described above is that the extract formed upon cell lysis is soluble under conditions 

developed for native extracts (e.g., standard buffers and detergents and minimal mechanical 

perturbation). In contrast, for cells or nuclei crosslinked with chemical reagents including 

formaldehyde, making a soluble extract requires high levels of mechanical (e.g., sonication) 

or enzymatic disruption (and sometimes both). When analyzing chromatin-bound lncRNA, 

this step also serves to fragment the genome. While in ChIP, the resulting chromatin 

fragments are frequently 200 bp long, the higher degree of crosslinking used in 

hybridization capture experiments can lead to the use of larger chromatin fragments. When 

mechanically fragmenting crosslinked nuclei, not only the DNA but also the target RNA is 

sheared. This problem can be partially mitigated by using of enzymes, including DNase, to 

help decrease the need for extensive mechanical shearing. Although shearing the target RNA 

can be problematic as it compromises the covalent integrity of the RNA, shearing also offers 

advantages when analyzing substructures within the target RNA [33].

Capture oligonucleotide design

Hybridization capture generally uses biotinylated nucleic acids that can be immobilized on 

streptavidin-coated magnetic beads. The biotin-streptavidin interaction is robust to even 

highly denaturing conditions, but is generally difficult to elute. As an alternative, 

desthiobiotin (DSB) can also be used, and material bound to DSB-conjugated capture 

oligonucleotides can be eluted from a solid support using a biotin-containing buffer [28, 20].

There are several factors to balance when choosing capture oligonucleotide sequences for 

hybridization capture experiments. First is to determine regions that are sufficiently unique 

to the target RNA for hybridization. This has been accomplished in several ways, including 

using pipelines that were originally developed for in situ hybridization protocols [21]. Next, 

it is important that the oligonucleotides can hybridize to the target RNA in the context of a 

crosslinked extract. There are generally two solutions: (1) tile the entire RNA with capture 

oligonucleotides with the expectation that at least some sites will be available for 

hybridization [21, 22], or (2) use RNase H sensitivity in the presence of candidate capture 

oligonucleotides sequences to determine accessibility [20]. Both these approaches have 

proven successful under multiple hybridization capture conditions. For example, while 

CHART generally works using RNase H mapped capture oligonucleotides [20], using tiled 

ChIRP-like capture oligonucleotides provided nearly identical results [34]. Similarly, ChIRP 

can be adapted to fewer oligonucleotides [33]. In the extreme case, CHART has been 

successful using individual capture oligonucleotides [23]. While most recent experiments 

have used DNA chemistry for capture oligonucleotides, longer RNAs and O2-methyl RNA 

capture oligonucleotides have also been used in genome-wide mapping experiments [35]. 
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The high cost of synthetically biotinylated oligonucleotides can become prohibitive, but it is 

possible to enzymatically biotinylate capture oligos individually or in pools [34], allowing 

the use of unmodified DNAs.

Hybridization and rinse conditions

Critical to the success of hybridization capture reactions is finding hybridization conditions 

that provide high yields while maintaining sufficient specificity. It is also important to find 

conditions that maintain the solubility of the extract, which can be a challenge when using 

chromatin extracts. The three approaches highlighted in Table 1 converged on similar 

solutions to this problem: using high levels of denaturants combined with high concentration 

of salts. The urea and high salt buffer used in CHART is specifically tuned to minimize 

double stranded DNA (dsDNA) denaturation (with high salt, which increases duplex melting 

temperature) while maintaining stringency (with high urea, which depresses duplex melting 

temperature) with respect to short capture oligonucleotide hybridization. The original ChIRP 

conditions accomplish a similar end with formamide rather than urea, but these conditions 

cause higher degrees of denaturation of dsDNA. In the case of RAP, the high salt and 

denaturation is accomplished by the same additive, guanidinium thiocyanate. The more 

forcefully denaturing conditions used in RAP are required for the longer RNA capture 

oligonucleotides that have a higher melting temperature.

Elution Conditions

Elution conditions for each of hybridization capture experiments are highly variable 

depending on the class of RNA target that will be analyzed. For example, the nucleic acids 

can be isolated by eluting from the resin using proteinase K, but this will destroy the target 

proteins. In contrast, nucleases can be used to elute the target proteins, but at the cost of the 

nucleic acids. In some cases specific elution has been successful at decreasing background. 

One example of this is the use of only RNase H to specifically cleave the target RNA 

hybridized to DNA capture oligonucleotides. In the case of protein analysis, the proteins can 

be eluted from the resin directly for the purposes of mass spectrometry.

Quality control and data analysis

The most challenging part of a hybridization capture experiment is determining which 

enriched molecules represent real targets of the RNA as opposed to background or artifacts. 

In some cases, previous experiments and biology create clear expectations that help in 

optimization and analysis. For lncRNAs where little is known, however, it can be difficult to 

determine if an experiment is working, and to determine what represents real signal rather 

than background in the experiment. To some extent these challenges can be mitigated using 

well-designed controls as discussed below. Ultimately further experimentation will be 

important to provide scrutiny and functional context for the results.

Distinguishing artifacts from signal using controls

Many of the considerations when using hybridization capture approaches overlap with other 

affinity purification techniques. There are also a set of artifacts that are unique when using 
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hybridization capture approaches. These two types of artifacts can be broken down into (1) 

artifacts from non-specific binding and (2) hybridization induced artifacts (Fig. 3). These 

artifacts can be problematic regardless of whether the goal of the experiment is to study 

protein, DNA, or RNA targets of a lncRNA.

The artifacts caused by direct, non-specific binding are similar to conventional affinity 

purification reactions so will be discussed only briefly here. For example, basic proteins in 

the extract can bind non-specifically to the acidic oligonucleotides on beads. In this case, 

incorporating high salt rinses can help reduce this source of background. As these 

interactions are non-covalent, stringent rinses can help remove these interactions while 

leaving the covalently bound molecules that are the real targets of the RNA. The stringency 

of these rinses is primarily limited by the stability of the capture oligo - target RNA duplex. 

Most of these artifacts can be identified using control capture oligonucleotides that target a 

different RNA (or no RNA at all). These artifacts may persist in the absence of crosslinking, 

although it is frequently difficult to compare crosslinked and non-crosslinked extracts to 

each other.

When examining enrichment of proteins, this non-specific binding provides a challenge due 

to the dynamic range of protein concentrations in the proteome. Similar to other affinity 

enrichment approaches, Stable isotope labeling by amino acids in cell culture (SILAC) [36] 

in combination with the other controls discussed here can provide a powerful tool to 

measure protein enrichment in complex mixtures [25].

Direct hybridization to off-target DNA or RNA

One source of artifacts is caused by hybridization events in which the capture-

oligonucleotide directly hybridizes to an off-target RNA or DNA. In the case of CHART the 

hybridization to off-target DNA is reduced by using hybridization conditions that leave 

genomic DNA in its double stranded, and any residual signal from capture oligonucleotides 

binding to DNA can be reduced using an RNase H elution, which elutes RNA bound to the 

capture oligonucleotides but not DNA. An alternative method that controls for both off-

target RNA and DNA binding is to use two independent sets of capture oligonucleotides that 

bind the target RNA. Real signals are expected to be found in both experiments whereas 

signals that are found in only one experiment are interpreted as hybridization-induced 

artifacts. Using cells that do not express the target RNA is also a good way to control for this 

class of artifact.

Indirect hybridization to off-target DNA or RNA

A challenge when interpreting signals from hybridization capture experiments arise from 

molecules that artifactually hybridize to the target RNA. For example, if the hybridization 

capture conditions are not well optimized, the enriched DNA may include motifs that are 

directly complementary to the target lncRNA. This could be due to real biology (i.e., the 

lncRNA forms R-loops with its target DNA), but it could also be caused by hybridization 

induced artifacts. This class of artifact is not addressed using the controls listed above. 

Using two sets of capture oligonucleotides targeting the same RNA will both result in beads 

coated with the target RNA; any artifacts that bind the target RNA will be interpreted as 
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“real” signal because they are present in both oligonucleotide mixtures. Similarly, using 

cells that lack the target RNA will remove these artifactual signals, making them appear as 

true positives.

While in general these indirect hybridization induced artifacts are difficult to distinguish 

from real signals, it is occasionally possible to distinguish real signal from these artifacts. 

The Xist lncRNA spreads across one of the two female X chromosomes. By using a cell line 

that allows allele-specific analysis [37, 38], it was possible to distinguish Xist spreading on 

the two different copies of the X chromosome. As the artifactual signals are not allele-

specific but the biologically valid signals from hybridization capture analysis of Xist are 

allele-specific, it was possible to validate that Xist CHART signals were not caused by 

hybridization induced artifacts [34].

In summary, controls are helpful to avoid over-interpretation of capture hybridization data, 

yet even with well designed controls there is reason for caution. In some cases positive 

controls, or at least agreement with past literature, can assist in interpretation. For example, 

if a lncRNA colocalizes with a chromatin modifying complex, it is expected that there will 

be extensive overlap between ChIP signals of the target protein and signals from the 

hybridization capture coupled to DNA sequencing experiments. Examples of this were 

found with the roX2 lncRNA, which binds to the same discrete sites where the proteins in 

the fly dosage compensation complex bind [21, 20]. Similarly, overlap was observed 

between the ChIP signals from the polycomb repressive complex 2 with Xist CHART 

signals on the inactive X during the onset of X-chromosome inactivation [34]. Functional 

connections can also be used to help judge the validity of hybridization capture data. For 

example, both roX2 in fly and Xist in mouse were found to be highly enriched on the X-

chromosome [21, 20, 22, 34], as expected based on their functions [39]. Similarly, SAF-A/

hnRNP-U was previously reported to work together with Xist [40, 41, 42], so it is reassuring 

that three recent hybridization capture experiments enriched this protein [25, 24, 26]. 

Nonetheless, because so little is known about many lncRNAs, leaving few good positive 

controls, it is frequently challenging to optimize enrichment conditions or determine 

appropriate signal thresholds in many hybridization capture experiments.

Conclusions

Hybridization capture experiments have already provided insight into a wide range of 

lncRNA functions and mechanisms [12]. For example, several different hybridization 

capture approaches have collectively demonstrated the spreading dynamics of Xist [34, 22], 

and revealed proteins that bind to it [25, 24, 26]. While these some of these results agree 

well with each other (for example, Xist spreading profiles in female mouse embryonic stem 

cells) demonstrating convergence and progress in the field, other results have only partial 

overlap (the list of Xist-binding proteins in different analyses) underscoring the continued 

need for protocol development and vigilance. It is encouraging that the successes and 

lessons from the different hybridization capture approaches have influenced each other, have 

been expanded to new approaches, and continue to be optimized. As the field of lncRNA 

biology continues to expand, these hybridization capture approaches have the potential to be 
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a primary vehicle driving the integration of lncRNAs into our understanding of biological 

regulation.
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Figure 1. 
Overview of hybridization capture methods to study endogenous RNAs.
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Figure 2. 
Chemical structures of crosslinkers used in hybridization capture approaches. A. 

Formaldehyde. B. Glutaraldehyde. C. Disuccinimidyl glutarate. D. Trimethylpsoralen.
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Figure 3. 
Overview of enrichment of desired signals (green) as opposed to different types of artifacts 

(red) using hybridization capture experiments.
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Table 1

Overview of three hybridization capture methods.

Method

CHART1 ChIRP
2

RAP
3

crosslinking
reagent(s) 3% formaldehyde 1% gluteraldehyde

2 mM DSG
a
 and

3% formaldehyde

oligonucleotide
chemistry

biotinylated or DSB
b

~25 nt DNAs
biotinylated
20 nt DNA

biotinylated
120 nt RNAs

oligonucleotide
design RNase H mapping full tiling full tiling

hybridization
conditions

2 M urea
~850 mM salt

detergents
c

10% formamide
500 mM salt

1% SDS

3 M guanidine
thiocyanate

detergents
d

elution
conditions RNase H

e
RNases A + H Proteinase K

f

1
Conditions from original citation, Simon, 2011 [20].

2
Conditions from original citation, Chu, 2011 [21].

3
Conditions from original citation, Engreitz, 2013 [22].

a
DSG: disuccinimidyl glutarate.

b
DSB: desthiobiotinylated.

c
Detergents used in CHART conditions: ~0.2% N-Lauroylsarcosine, 0.03% deoxycholate, 0.3% SDS.

d
Detergents used in RAP: 1% NP-40, ~0.2% N-Lauroylsarcosine, 0.1% deoxycholate.

e
Alternate elution with biotin buffer reported when using DSB.

f
Alternate elution with heat (94° 5 min) reported for RNA analysis.
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